

SHARP INJURIES IN CLINICAL PRACTICE AMONG NURSING STUDENTS OF DA NANG UNIVERSITY OF MEDICAL TECHNOLOGY AND PHARMACY

Trinh Thi Doan Nguyen¹✉, Hoa Thi Minh Hoang¹, Dieu Thi Hien Luong¹

¹Microbiology Department, Da Nang University of Medical Technology and Pharmacy

ABSTRACT

Background: While studying at the hospital, nursing students are at risk of getting sharp instrument injuries during clinical practice. The likelihood of being injured by sharp instruments in nursing students is very high due to prolonged clinical practice in medical facilities, working in new environments, lacking of experiences and concentration. Our study aimed to detect the prevalence of students injuring by sharp instruments in clinical practice and related factors influencing this rate.

Methods: A descriptive cross-sectional study was conducted on 400 nursing students going for clinical practice from January 2018 to May 2018 at Da Nang University of Medical Technology and Pharmacy. Data were collected through self-filled questionnaires.

Results: Our study showed that 71% of students were hurt by sharp instruments. The number of injuries including 1 time, 2 times, 3 times and more than 3 times accounted for 14.8%, 18.7%, 19.7% and 46.8%, respectively. Fingers were the most frequently damaged position (74.7% of the total number of injured cases), the rest were hands, toes and feet with 22.9%, 1.5% and 0.9%, respectively. Regarding workplaces where the injury occurred, the Faculty of Internal Medicine (42.8%) was the most common place of occurrence, followed by Department of Surgery (32.8%), Rehabilitation Department (8.6%); Department of Pediatrics (7.9%) and Emergency Department (7.9%). In which, 70.4% occurred at the patient room, 20.3% at the injection room and 9.3% at the waste collection. The proportion of students injured when removing needle cap was 9.5%, covering needle cap was 24.4%, breaking ampoule was 40.1%, infusing, collecting venous blood and disposing of sharp instruments were 16.9%, 2.3% and 6.8%, respectively. There was a significant relationship between the proportion of sharp instruments injuries and students' learning ranking, trained on using sharp instruments safely and student's knowledge about sharp instruments ($p<0.05$).

Conclusions: The proportion of nursing students injured by sharp instruments was significantly high and associated with students' learning ranking, training about sharp instruments safety and qualified knowledge about sharp instruments.

Key words: Injury, sharp instruments, nursing students.

Received:

27/02/2022

Revised:

22/3/2022

Accepted:

30/03/2022

Corresponding author:

Trinh Thi Doan Nguyen

Email:

doantrinhxn@dhktyduocdn.edu.vn

Phone: 0973606763

I. INTRODUCTION

Occupational exposure refers to direct contact between mucosal or intact skin with blood, tissue or body fluids containing infectious diseases or direct

contact with hazardous chemical substances and rays at work. Among many causes of occupational exposure, sharp instrument injuries is one of the most common causes in the world, and is also a

cause of blood transfusions of many diseases such as hepatitis B virus, hepatitis C virus, and human immunodeficiency virus.

According to U.S. Centers for Disease Control and Prevention, in 2008, there were approximately 384,000 skin injuries among healthcare workers, of which medical students represented 45%. The rate of sharp instruments injuries among medical students in universities in the world ranged from 9.4% to 100% [1]. According to World Health Organization (WHO), in 2010, the average number of sharp instruments injuries for healthcare workers was 0.2 - 4.7%. The average number of first time sharp instruments injury was 1.4 - 9.5/100 healthcare workers, or 6.2/100 hospital beds. The most suffered subjects were nurses (44 - 72%), followed by doctors (28%), technicians (15%), paramedics (3 - 16%) and administrative staffs (1 - 6%) [2].

Nursing students are at risk of getting injury by sharp instruments during clinical practice. The likelihood of being injured by sharp instruments in nursing students is very high due to prolonged clinical practice in medical facilities, lack of experience, lack of concentration and working in new environments. The present study aims to detect the prevalence of students injuring by sharp instruments in clinical practice and related factors influencing this rate.

II MATERIALS AND METHODS

A cross - sectional study was conducted on 400 nursing students who had had clinical practice were chosen by using stratified random sampling.

Using a questionnaire designed according to CDC's guidelines for sharp instrument injury investigations. The questionnaire includes three parts:

Part 1: Student's general informations.

Part 2: Student's knowledge about sharp instruments injuries.

Part3: Student's experience with sharp instruments injuries.

The rubric for student's knowledge about sharp instruments injuries was 1 point for a correct answer and 0 point for an incorrect one. Those achieving $\geq 75\%$ were considered qualified.

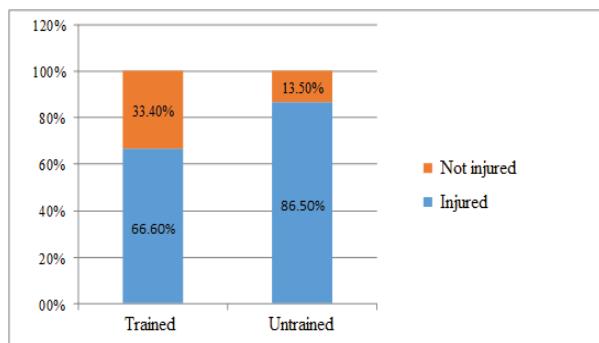
III. RESULTS

Among the chosen 400 students, 284 students (71%) had experienced sharp instruments injuries.

Table 1: Students' sharp instruments injuries situation

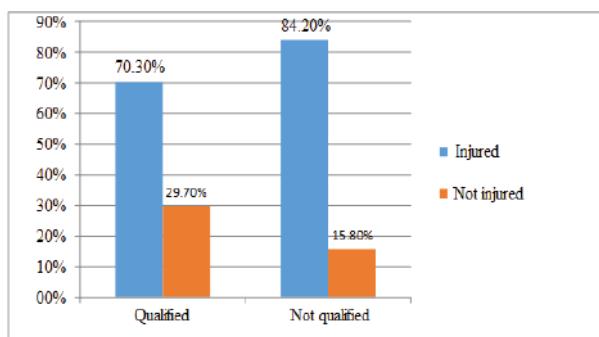
Category	N	%
Number of injuries (N=284)	1 time	42 14.8%
	2 times	53 18.7%
	3 times	55 19.7%
	> 3 times	134 46.8%
Level of injury (N=495)	Scratches	354 71.5%
	Cuts	141 28.5%
Body part (N=495)	Finger	370 74.7%
	Hand	113 22.9%
	Foot	4 0.9%
	Toe	8 1.5%
Time of day (N=495)	Morning	312 63.1%
	Afternoon	93 18.7%
	Night shift	90 18.2%
Faculty (N=495)	Surgery	162 32.8%
	Internal Medicine	212 42.8%
	Pediatrics	39 7.9%
	Resuscitation	43 8.6%
	Emergency	39 7.9%
Workplace (N=495)	Patient room	348 70.4%
	Injection room	101 20.3%
	Trash collection room	46 9.3%
Object (N=495)	Needle	194 39.2%
	Butterfly needle	61 12.3%
	Glass fragments	240 48.5%
	Surgical suture needle	0 0%
Task (N=495)	Removing needle cap	47 9.5%
	Recapping needle	121 24.4%
	Breaking ampule	198 40.1%
	Infusion	84 16.9%
	Venipuncture	11 2.3%
	Disposing sharp instruments	34 6.8%

Sharp injuries in clinical practice among nursing students...

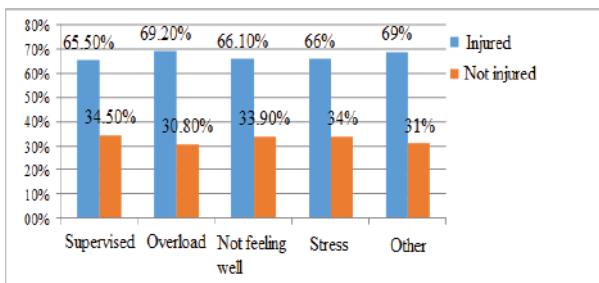

Category		N	%
Needle recapping technique used when injured (N=121)	One hand scoop	8	6.6%
	Two-hand method	82	67.8%
	Using shears	31	25.6%
Ampule opening technique used when injured (N=198)	Using gauzes	12	6.1%
	Using shears or scissors	6	3.0%
	Using bare hand	180	90.9%
First aid (N=284)	Proper technique	109	38.4%
	Improper technique	175	61.6%

Number of injuries: The proportion of students who had been injured by sharp instruments more than three times (46.8%) was highest while that of those injured once (14.8%) was the lowest. Level of injury: Two types of injury were reported: scratches (71.5%) and cuts (28.5%). Body part: Finger was the most injured body part (74.7%) while hand, foot, and toe accounted for 22.9%, 1.5% and 0.9%, respectively. Faculty: There was a significant difference in the number of injuries in different units: 42.8% in Internal Medicine, 32.8% in Surgery, 8.6% in Resuscitation, 7.9% in Pediatrics and 7.9% in Emergency. Most injuries occurred in the patient room (70.4%), while 20.3% occurred in the injection room and 9.3% in the trash collection room. Among the sharp instruments, needles caused the highest number of injuries (39.2%). Ampule opening caused the highest number of injuries (40.1%), followed by needle recapping (24.4%), infusion (16.9%), cap removing (9.5%), sharp instruments disposal (6.8%) and venipuncture (2.3%). 61.6% of the students did not follow first aid procedures properly.

Table 2: Relationship between sharp instruments injuries rate and characteristics of subjects


Category		Injured		Not injured		p
		N	%	N	%	
Gender	Male	24	68.6%	11	31.4%	p > 0.05
	Female	260	71.2%	105	28.8%	
Year	Junior	194	67.6%	93	32.4%	p < 0.05
	Senior	90	79.6%	23	20.4%	
Academic ability	Average	8	72.7%	3	27.3%	p < 0.05
	Good	150	72.1%	58	27.9%	
	Excellent	126	69.6%	55	30.4%	

The rate of female students getting injured (71.2%) was higher than that of male students (68.6%). The rate of seniors being injured (79.6%) was higher than that of juniors (67.6%); this difference was statistically significant ($p < 0.05$). Students with better academic ability had lower risks of getting injured with $p < 0.05$.


Figure 1: Students' training

The rate of injured students among untrained ones was 86.5%, higher than that among trained students (66.6%), this difference was statistically significant ($p<0.05$).

Figure 2: Students' safety knowledge

29.7% of those with sufficient safety knowledge had not experienced injuries, higher than that of those without sufficient knowledge (15.8%) ($p<0.05$).

Figure 3: Students' mental factors

Among those with the researched mental factors (261 supervised students, 146 overloaded students, 118 not feeling well students, 94 stressed students and 100 students with other factors), the rate of injured students was 65.5%, 69.2%, 66.1%, 66% and 69%, respectively.

IV. DISCUSSION

In this research, 284/400 students had experienced sharp instruments injuries (71%). This proportion

was lower than that in research in China [3], India [4] but higher than that in a research in Mexico [5] and Turkey [6]. The proportion of students who had been injured by sharp instruments more than three times (46.8%) was the highest while that of those injured once (14.8%) was the lowest. The proportions for that of those injured twice and three times were 18.7% and 19.7% respectively. This was similar to the research at Shiraz University [7] but was different from that at Namibia University where 58.5% of the students were injured once, 26.5% were injured twice, 5.8% were injured three times, and 8.8% were injured more [8]. In one research in Turkey, 58.4% of nurses had been injured 1 to 3 injuries [6]. Two types of injury were reported: scratches (71.5%) and cuts (28.5%). These were very dangerous since they posed the risk of blood transmitted diseases. Finger was the most injured body part (74.7%) while hand, foot, and toe accounted for 22.9%, 1.5% and 0.9% respectively. There was a significant difference in the number of injuries in different faculties: 42.8% in Internal Medicine, 32.8% in Surgery, 8.6% in Resuscitation, 7.9% in Pediatrics and 7.9% in Emergency. Most injuries occurred in patient room (70.4%) while 20.3% occurred in injection room and 9.3% in trash collection room. This was similar to Smith's research at North Queensland where a large proportion of students were injured in patient room (31.8%), treatment room (8.5%), ICU (1.9%) [9]. This can be explained by the frequency of damage associated with the frequency of infusions and most patient care activities (especially injections, infusions, blood tests...) are usually conducted in patient room.

Among the sharp instruments, needles caused a high number of injuries (39.2%), which was similar to a research in Turkey [6]. This is reasonable since students have to carry out many different tasks involving needles such as cap removing, recapping and disposal. Ampule opening caused the highest number of injuries (40.1%), followed by needle recapping (24.4%), infusion (16.9%), cap removing (9.5%), sharp instruments disposal (6.8%) and venipuncture (2.3%). This was similar to the research at Selcuk University [10]. However, research in Malaysia showed that venipuncture was the most common cause (59.1%) [11]. With needle recapping, 67.8% of the injuries occurred when using the two-hand method, while only 6.6% occurred

when using the one hand scoop method, and 25.6% occurred when using shears. This showed that students lacked experience and knowledge about handling needle after injection. With ampule opening, 90.9% of the injuries occurred when using bare hand, 6.1% occurred when using gauzes and 3.0% occurred when using shears of scissors. This shows that students did not follow safety procedures for injection. 61.6% of the students did not follow first aid procedures; this was higher than that at Melaka, Malaysia [12]. This shows that medical centers need to have strict rules about first aid procedures.

The rate of female students getting injured was higher than that of male students. This was similar to Rapparini's research in Brazil [13]. The academic year was a factor that many studies show that there was a link to the injury. The rate of seniors being injured was higher than that of juniors since seniors have to do more tasks. Research had shown a statistically significant relationship between academic year at college and the rate of sharp instruments injuries ($p<0.05$). This was different from Smith's research in which the percentage of juniors that experienced sharp instruments injuries was 14.8 times higher with $p<0.01$ [9]. At the Nursing University in Australia, third year student suffered injured 14.8 times higher than other courses ($p<0.01$) [14]. Students with better academic ability, knowledge and skills had lower risks of getting injured. Research had shown a statistically significant relationship between students' academic performance with students' sharp instruments injuries ($p<0.05$). As can be seen in figure 2, the rate of injured students among untrained ones was 86.5%, which was 1.3 times as high as that among trained students (66.6%), this difference was statistically significant ($p<0.05$). Similarly, Victor Hugo Garcia's research in Mexico also found a relationship between training and sharp instruments injuries: the rate of injured was higher in students without preventive training compared to those who had such a training (68% vs 51%; p value= 0.002) [5]. As can be seen in figure 3, 29.7% of those with sufficient safety knowledge had not experienced injuries. This rate was 1.9 times as high as that of those without sufficient knowledge (15.8%), this difference was statistically significant with $p<0.05$. Injuries caused by sharp instruments in particular and like other injuries are predictable

and preventable, rather than random, irregular, or risky events. Research by Zhang YT showed that health protection education for students reduced the rate of needle injury by 33% [15]. Most students know that preventable sharp object injury is important to implement the intervention program successfully. They are aware to inform responsible people like nurses and lecturers when being injured for treatment. This was similar from the research in Mexico [5] and in the U.S. [16]. The researched mental factors such as supervised, overloaded, not feeling well, stressed and with other factors, were the risk of students injury. Some research had shown that some other possible factors were anxiety and lack of interest [13].

IV. CONCLUSIONS

The rate of students injured by sharp instrument in clinical practice was quite high (71%) and they can be injured multiple times. Techniques that most likely to cause injuries were related to needles and glass fragments such as breaking ampule, recapping needle... Mentality was also a contributing factor. There was a statistically significant relationship between sharp instruments injuries and students' academic ability, safety training and knowledge about sharp instruments injuries.

REFERENCES

1. CDC. Wordbook for designing implementing, and evaluating a sharps injury prevention program. 2008.
2. WHO. The best practices for injections and related procedures toolkit, Geneva. 2010.
3. Shi CL, Zhang M. Study on status of needle-stick and other sharps injuries among healthcare workers in a general hospital. Chinese journal of industrial hygiene and occupational diseases. 2012; 29(12): 939-943.
4. Hussain ZSA, Ram SM, Galinde J et al.. Occupational exposure to sharp instrument injuries among dental, medical and nursing student in Mahatma Gandhi Mission's Campus, Navi Mumbai, India. Journal of Contemporary Dentistry. 2012; 2(2): 1-10.
5. Garcia VH and Radon K. Preventive Training among Medical Interns in Mexico City and Its Association with Needlestick and Sharp Injuries - A Cross Sectional Study. J Clin Diagn Res. 2017;(3): IC05-IC07.
6. Akyol AD and Kargin C. Needle Stick and Sharp Injuries among Nurses. Global Journal of Nursing and Forensic Studies. 2016;1:109.

Hue Central Hospital

7. Askarian M, Malekmakan L, Memish ZA et al. Prevalence of needle stick injuries among dental, nursing and midwifery students in Shiraz, Iran. *GMS Krankenhaushygiene Interdisziplinar*. 2012; 7(1).
8. Small L, Pretorius L, Walters A et al. A surveillance of needle-stick injuries amongst student nurses at the University of Namibia. *Journal of Interdisciplinary health sciences*. 2011; 16(1).
9. Derek RS and Peter AL. Needlestick and sharps injuries among nursing students. *Journal of Advanced Nursing*. 2005; 51(5): 449-455.
10. Fagundes FR and Ribeiro LA. Occupational exposures to body fluid anh behaviors regarding their prevention anh post exposure among medical anh nursing student at Selcuk, public university. *Review Instituto De Medicina Tropical De Sao Paulo*. 2014;56(2): 157-163.
11. Swe KMM, Somrongthong R, Bhardwaj A et al.. Needle Sticks Injury among Medical Students during Clinical Training, Malaysia. *International Journal of Collaborative Research on Internal Medicine & Public Health*. 2014; 6(5).
12. Bhardwaj A, Sivapathasundaram N, Yusof MF et al. The Prevalence of Accidental Needle Stick Injury and their Reporting among Healthcare Workers in Orthopaedic Wards in General Hospital Melaka, Malaysia. *Malaysia Orthopaedic Journal*. 2014;8(2).
13. Rapparini C, Saraceni V, Barroso PF et al. Occupational exposures to bloodborne pathogens among healthcare workers in Rio de Janeiro, Brazil. *Journal of Hospital Infection*. 2007;65(2):131-137.
14. Rais N and Jamil HM. Prevalence of needle stick injuries among health care worker providers. *International journal of endorsing health science research*. 2013;1(2):73-79.
15. Zhang YT and Wang LS. Protection education towards needle stick injuries among nursing students in China: a meta-analysis. *Chinese Journal of Evidence-Based Medicine*. 2013;13(6):754-759.
16. Blackwell. Nursing Students Experiences with Needlestick Injuries. *Journal of Undergraduate Nursing Scholarship*. 2007; 9(1).